
Source of Acquisition
NASA Ames Research Center

Abstract: Data from mobile and stationary
sensors will be vital in planetary surface
exploration. The distribution and collection of
sensor data in an ad-hoc wireless network
presents a challenge. Irregular terrain, mobile
nodes, new associations with access points and
repeaters with stronger signals as the network
reconfigures to adapt to new conditions, signal
fade and hardware failures can cause: - Dataerrors

Out of sequence packets - Duplicate packets
Drop out periods (when node is not
connected)

Software Architecture of Sensor Data Distribution
In Planetary Exploration

Charles Lee', Richard Alena2, Thom Stone3, John Ossenfort', Ed Walker2, Hugo Notario2

'SAIC / NASA Arnes Research Center
2NASA Ames Research Center

3CSC / NASA Ames Research Center

To mitigate the effects of these impairments, a
robust and reliable software architecture must be
implemented. This architecture must also be
tolerant of communications outages. This paper
describes such a robust and reliable software
infrastructure that meets the challenges of a
distributed ad hoc network in a difficult
environment and presents the results of actual
field experiments testing the principles and
actual code developed.

1. Introduction

Sensor data are an essential part of planetary
surface exploration. Sensor data arises fiom
status monitoring, system health assessment as
well as scientific sampling. All are required for
the success of the mission. Sensor data is
required for all aspects of a mission: - Planning requires sensor data as

input to determine location,
envirokent and distances.

* Scheduling requires sensor information
for calculating duration, time, position,
and routes
Operation requires sensor information to
calculate location, progress, health status
etc.

Sensor data are real time streams and are time
critical. Parallel processing of sensor data to
produce useful information introduces reliability
issues. The two major causes of data loss are the
burden of communications overhead and packet
drops plus the difficulty of multithreaded
programming. Packet loss in wireless systems
can be caused by many factors such as: - Congestion

0

* RF interference
0 Multi-pathing -
0 Routing problems

Moving out of range of base station

Obstacles to line of sight

Transmitting sensor data accurately over a
wireless infrastructure to single or multiple
receivers in very difficult environments where
packet loss and even loss of signal are the norm,
are the problems that we addressed using
software techniques at the applications level.
Although this work was done for surface
communications it could well have application
to other data management areas, such as orbital
asset management and spacecraft tracking and
control. Satellite constellations usually consist
of many instruments and sensors producing
multiple steams to multiple consumers of the
data. Satellites can experience periods of a high
rate of data errors and periods of loss of signal.
Like our surface data, spacecraft sensor data can

have highly distributed users, some on different
planets.
We experimented with different schema
frameworks to determine a method to find an
optimal system for robustness and reliability of
sensor data for surface communications.
In the end we selected Message Oriented
Middleware (MOM) for our distributed
infrastructure [3]. Message Oriented
Middleware is a category of inter-application
communication software that presents an
asynchronous message-passing model as
opposed to a requestlresponse model.
A MOM has the following attributes:

Fast
* Reliable

Asynchror,ous
0 Guaranteed message delivery
0 Receipt notification

Transaction control
As far as the client software is concerned,

MOM is indistinguishable fi-om real-time
processing [4]. The primary advantage of a
message-oriented communications protocol is
the ability to store, route, and resend a message
that needs to be delivered.

Most MOM system provide persistent storage
to hold messages until they are successfully
transferred. This means that it is not necessary
for the sender and receiver to be connected
when data are created. This is useful for dealing
with faulty connections, unreliable networks,
and timed connections (where communications
is only available during predictable periods). i t
also means that if a receiver fails to receive a
message for any reason, the sender can continue
unaffected, since the messages will be held in
the message store and will be transmitted when
the receiver reconnects.

MOM systems present two messaging models:

Point to point:
0 This model [2] is based on message stores

known as queues. A sender sends a message
to a specified queue. A receiver receives
messages from the queue. A queue can have

multiple senders and receivers, but an
individual message can only be delivered to
one receiver. If multiple receivers are
listening for messages on a queue, the
underlying MOM system usually detennines
which receiver will receive the next
message. If no receivers are listening on the
queue, messages remain in the queue until a
receiver attaches to the queue.

This model [l] is based o n message stores
known as topics. Publishers send messages
to a topic. Subscribers retrieve messages
from a topic. Unlike the point-to-point
model, many subscribers can receive the
same message.

Publish Subscribe:
0

2. Overview of Message Services

Typically a message service is implemented
using a Java framework. A message-driven bean
(MDB) is an Enterprise Java Bean (Em) that
functions as a message consumer. Unlike
session beans or entity beans, clients cannot
access message-driven beans directly. Also,
unlike session beans and entity beans, a
message-driven bean does not have remote or
home interfaces. The only access a client has to
a message-driven bean is through a JMS (JAVA
Messaging Service) destination (topic or queue)
to which the message-driven bean is listening.

A MDB must implement two interfaces:

[11 javax.jms.MessageListener--This
interface defines the onMessage callback
method. When a message is put on the
queue/topic, the onMessage method of
the message-driven bean is called by the
EJB container and passed the actual
message.

[21 javax. ejb.MessageDrivenBean--This is
the EJB interface that contains the EJB
lifecycle methods:
ejhCreate()--called by the EJB container
when the message-driven bean is created
ejbRemove()--called by the EJB

container when the message-driven bean
is destroyed or removed from the EJB

SetMessageDriven Context(MessageDriv
encontext context)--called prior to
ejbcreate and passed the message-
driven context by the EJB container

pool

A message-driven bean must declare
deployment information about itself in a
deployment-descriptor file named ejb-jar-xmZ.
The EJB container handles the duties of
subscribing the bean to the topic or connecting it
to the queue based on information placed in the
deployment descriptor.
The context has runtime information, for
instance transaction data.
The diagram in Figure 1 illustrates the
interactions between a JMS message, a client, a
topic, an application server, an EJB container,
and message-driven bean instances.

As mentioned before, message-driven beans do
not have remote or local interfaces as with
session beans and entity beans. Message-driven
beans are not located by client classes, and
client classes do not directly invoke methods on
them All access to a message-driven bean is
through a JMS topic or queue that directs
messages at the message-driven bean through
the EJB container. The EJB container ultimately
passes the JMS message to the message-driven
bean through the bean’s onMessage method. All
message-driven beans must implement the
javax. ejb. MessageDrivenBean and
javax. jms.MessageListener interfaces, as the
example illustrates.

The Java Message Service (JMS) provides a
standard Java-based interface to the message
services of a MOM of a MOM schema from
another vendor.

Messaging systems are classified into different
models that determine which client receives a
message. The most common messaging models
are:

Publish-Subscribe Messaging
Point-To-Point Messaging
Request-Reply Messaging

Not all MOM providers support all these
models.

Publish-Subscribe
Messaging

I
I
I ,

Figure 1 Publish subscriber Messaging

When multiple applications need to receive the
same messages, Publish-Subscribe Messaging is
used. The central concept in a Publish-Subscribe
messaging system is the “Topic”. Multiple
Publishers may send messages to a Topic, and
all Subscribers to that Topic receive all the
messages sent to that Topic. This model, as
shown in Figure 1, is extremely useful when a
group of applications want to notify each other
of a particular occurrence.

In Publish-Subscribe Messaging, there may be
multiple Senders and multiple Receivers.

Point-To-Point Messaging

When one process needs to send a message to
another process, Point-To-Point Messaging can
be used., This may or may ‘not be a one-way

may only send messages, only receive
messages, or send and receive messages. At the
same time, another client can also send andor
receive messages. In the simplest case, one
client is the Sender of the message and the other
client is the Receiver of the message.

d2tic!PSb$?. The cEe2t tc! a ,VessagiEg system

There are two basic types of Point-to-Point

Messaging systems. The first one involves a
client that directly sends a message to another
client. The second and more common
implementation is based on the concept of a
Message Queue. Such a system is shown in
Figure 2.

Figure 2. Point to Point Messaging

The critical aspect of Point-to-Point messaging
is that, even though there may be multiple
Senders of messages, there is only a single
Receiver for the messages.

JMS Parent Publish 1 Point TO Point
Subscribe ~ Domain
Domain I I

3. ARCHITECTURE DESIGN

We selected Publish Subscribe
architecture for data distribution.
In our project requirements, the
data is to be distributed to
multiple remote clients and the
publisher may publish the data to
a remote machine. These
requirements are satisfied with
Publish Subscribe architecture.

Figure

As Figure 3 shows, an Astronaut carries a
backpack and our software runs on a computer
in the backpack. A GPS unit is connected to the
computer and the data are distributed to the JMS
server by using the GPS server model. The
client will access the data by subscribing to the
topic using the API provided by the GPS server
developer.
The Biological information from the Astronaut
is also distributed by the architecture as shown
in the Figure 4.

MEX Nonm Publisher

Figure 4. Biosensor architecture

We have (3) collaborated with a Robotic Rover
team (Extra Vehicular Activity Robotic
Assistant (ERA)) team from Johnson Space
Center in several exploration field tests (see
below). The sensor data needs to be distributed
to the ERA server so that the robot can perform
commands such as:

0 Follow the astronaut
0

0 Make a voice note
0

Take a picture of an area that is of
interest to the astronaut
Take a picture of an astronaut

Open a sample bag for a specimen
Since the ERA team is using a CORBA
(Common Object Request Broker Architecture)
framework [6] for their distributed object
model, we needed to distribute the data across a
CORBA object by connecting our CORBA
client with the sensor and pushing the data to
the Rover object running on CORBA ORB
(Object Request Broker).

The architecture of the data distribution to the
ERA server is shown in Figure 5. The ERA has
a server called Executor to accept the data and
store it in local memory for a finite period of
time. We need to push the data at a rate that
refreshes the data before the memory times out.

From;

Linux dGPS

Figure 5. The ERA CORBA server.

The subscribed client will receive the stream of
data by intercepting the message listener. An
example of this type of client is the Rover
monitor. It can show the movement of the rover
on a map in the real time. The figure 6 shows

the monitor screen from a pre-field test at
Moffett Field, CA.

The circle with cross is the moving cursor
showing the rover location by interpreting the
coordinates received from subscribing to the
GPS topic.

4. RELIABLE AND ROBUST SURFACE

COMRlUNICATIONS

The architecture we have described has the
capability of providing reliability and robustness
during short outages. However, some issues are
not addressed directly by our architecture itself.
Of most concern to us are longer duration
network outages in severe environments.
The low power output and delay sensitive
protocols of 802.11, especially when used over
multi-hop long haul point to point circuits, is
prone to fading. Add the problems caused when
equipment moves out of line of sight or is
subject to routing difficulties as equipment
moves and long duration outages will occur.

We have the tested our methodology during
simulation tests at the Mars Desert Research
Station in Utah in the spring of every year from
2002-2005. These “Mobile Agent” expeditions
tested interactions between astronauts and
robotic assistants. They were a collaborative
effort between several NASA Centers. We used

802.1 lb to communicate between astronaut,
robot and the base station. Some of these links
were over several kilometers. Repeaters were
put in temporary locations and subject to wind
and rain. A satellite link sends the data from
base camp to researchers at their home
institutions.
As the astronauts and robots move they come in
and out of wireless signal coverage. Under such
conditions, with short-term outages the norm,
data distribution becomes unreliable.
Connections can be lost either between the
astronaut and the JMS server, or from the ERA
robot to the JMS server (or both). Any of these
data interruptions will keep the sensor data from
reaching the proper destination.
We devised a software workaround to mitigate
this impairment.
We established a retry loop that continues to test
the path until it has recovered. To prevent the
retries fkom impacting data collection from the
sensor, tying up CPU usage, or other resources
we set a counter to wait a period of time (in
seconds) before the connection is retried. Of
course the data is stored until connectivity is
established again.

The logic path used for implementing timeout
loops in the subscriber model is as follows:

In the processing of data loop
If (reconnectCounter==O)

DoReconnect() ;
Publish();

Reconnect Counter--;
Else

Endif

When (ConnectionException)
SetReconnect Counter;

End loop

Another important issue is that when
SerialConnection class is used to acquire data
from the COM port, it can’t be interrupted by
other tasks, as the data flow received is a

continuous real-time stream. To prevent
interruption we provide separate threads for data
distribution and the SerialConnection class that
is dedicated to acquiring and storing the data in
memory for further processing.

Lessons Learned:
Field tests took place at the Mars Desert
Research Station (MDRS), in an isolated area in
Utah. A satellite link connected to the NASA
Research and Education Network (NREN)
through Glen Research Center in Ohio.
Astronauts (fully suited) are paired with robotic
assistants. They communicate with each other
over wireless links and the robot responds to
voice commands fkom the astronaut. The robot
contains a mobile WLAN repeater. The
activities are monitored from a base camp
several Kilometers away. Additional repeaters
are on ATVs nearby and on hilltops.

Experiences fi-om the 2003 Mobile Agents field
season:
There was an attempt to integrate the equipment
(robots, wireless, etc.) and software from the
many groups from ARC and JSC before the
outing but lack of time and travel resources
from the participants forced us to do a very
superficial integration effort. The various
groups were also in development stage until just
before the deployment.
It was almost expected that we would
experience problems and would have to
redesign in the field.
The first week of the two-week period was
marked by problems related to the substantial
delay of the receipt of packets as well as
frequent connectivity drops. The software
responsible for GPS location service failed to
correctly establish coordinates when the GPS
real time data from the backpack were delayed.
This made testing astronaut to robot to
operations center voice recognition and
command processing impossible. We had
additional problem with the backpack

computers overheating and routing on our multi-
hop wireless system.
We took several steps that mitigated the
problems.

0 We implemented an NTP (RFC 1305)
Timeserver to timestamp all GPS and
biosensor data. This made it possible to
correctly correlate the location of the
astronaut or the robot with a time series.

0 We moved the sensor message to a
computer that had less network traffic
and less other processing

0 We fully implemented our publish
subscribe middleware

These measures and further tuning of the
wireless infrastructure to fx some routing
problems and adding an additional fan to the
backpack led to several successful simulations.

Experiences during the 2003 field season were
more positive (even with some rather severe
weather and dust storms). Before deployment
we redesigned the astronaut backpack adding
better ventilation to accommodate an updated
rugged laptop computer.
The laptop had more memory and a mobile
Pentium processor and a wider operating
temperature range.
The WLAN complexity (mobile access points
on ATV and mobile robots with repeater sites
on far away) was reduced and multi-pathing and
channel overlap were reduced. Routing between
the elements was rationalized to prevent loops.
This led to higher bandwidth and better
throughput.
We tested OUT distributed sensor architecture by
placing the JMS server on different computers
on the system All worked as designed although
response was still slow but tolerable.

7%- ?An< npmoAn L G l t nn +ha o I I I I c I a o o p o nf 3nn3
1Ucl AVVJ JclUJUll U U l l L VI1 L l l c l JUCIclclJJclD VI &VVJ.

We optimized our software and redesigned the
client MI. The client is the “subscriber” to our
sensor data message server. One improvement
was to have the software “sleep” when no
messages are in the queues and awake when
they are available. This cut the CPU and
memory requirements substantially. The Sensor
data have frequency ranges of fiom 1-10 HZ the

“sleep” cycle left the resources for the other
software tasks. Improvements were also made
in the voice loop software, the mobile agent
software itself and the voice recognition
software. These upgraded produced improved
performance and seamless transition in and out
of wireless coverage.

6. CONCLUSION

The field tests and experiments show that the
distributed components model that utilized JMS
architecture is very suitable for real time sensor
data distribution. It produces reliable and robust
data stream to multiple clients in real time. The
publish subscriber model is very scalable even
for processing data from many sensors. For
publishing data from multiple sensors,
message beans, and topics, can be easily
created for each occurrence of a sensor.
Longer duration network outages as are
common in the field can be easily mitigated by
simple software modifications.
These techniques have relevance to the situation
where multiple assets are distributed on the
ground and in orbit and sensor and other data
are to be distributed to multiple consumers
locally or on Earth.

REFERENCES

[l] P. Eugster, P. Felber, R. Guerraoui, and A.-
M. Kermarrec,”Tne Many Faces of
Publish/Subscribe”, ACM Computing
Surveys, Volume 35, Issue 2, pp 114-131,
June 2003.

[2] L. Garces-Erice and E.W. Biersack and P.
Felber and K.W. Ross and G. Urvoy-Keiier.
”Hierarchical Peer-to-Peer Systems”,
Parallel Processing Letters, Volume 13,
Issue 4, December 2003.

[3] Jameela Al-Jaroodi, Nader Mohamed, Hong
Jiang, and David Swanson, “Middleware
Infrastructure for Parallel and Distributed
Programming Models in Heterogeneous

Systems”, IEEE Transactions On Parallel
and Distributed Systems, Vol. 14, No. 11,
November 2003.
Angelo Corsaro, and Douglas C. Schmidt,
‘‘The Design and Performance of Real-Time
Java Middleware”, IEEE Transactions On
Parallel and Distributed Systems, ppl155-
1167, Vol. 14, No. 11, November 2003.
Charles Zhang and Hans-Arno Jacobsen,
“Refactoring Middleware with Aspects”,
IEEE Transactions On Parallel and
Distributed Systems, pp1058-1073, Vol. 14,
No. 11, November 2003.
Victor Fay-Wolfe, Lisa C. DiPippo, Gregory
Cooper, Russell Johnston, Peter Kortmann,
and Bhavani Thuraisingham, “Real-Time
CORBA”, IEEE Transactions On Parallel
and Distributed Systems, Vol. 11, No. 10,
October 2000.
Wenbing Zhao, Louise E. Moser, and P.
Michael Melliar-Smith, “Unification of
Transactions and Replication in Three-Tier
Architectures Based on CORBA”, IEEE
Transactions on Dependable and Secure
Computing, pp 14- 23, Vol. 2, No. 1,
January-March 2005.

by SAIC, is the Technical Lead on Mobile Agents project
at NASA Ames Research Center. He holds a Ph.D. in
systems engineering and computer science from Oakland
University, in Rochester, Michigan. Compieted researcn
projects includes robust GPS switchboard on-demand
services that provide GPS information with awareness of
loss and the ability to regain wireless network
connections, and a store and forward architecture to
maintain data continuity in the event of network
connection loss. In addition, Charles Lee developed
distributed agents that serve sensor information through a
publish and subscribe architecture in heterogeneous
computer environments, and a mapping and planning

_ _

system that provides location and orientation of mobile
rovers and astronauts on topographic maps for navigation
planning and real time monitoring. Other work includes
join development of custom software to provide access to
avionics data for Advanced Diagnostics System (ADS)
and System Health Monitoring applications, and
collection and organization of International Space Station
(ISS) data sets by fault scenario, along with liaison with
ADS developers and users in the design of data interfaces,
user interfaces and tools relevant to ADS on ISS. He
developed the first version of Caution and Warning cube
visualization soha re that handles the command and data
handling events for fault detection, and then was became
Strider application.

is a hn Ossenfort
networkkystems administrator at the NASA Ames
Research Center, specializing in wireless
communications. He has been acting systems
administrator for the IMT Lab and the MEX testbed for
the past three years and has accompanied the Mobile
Agents team on four field simulations in the ArizonaAJtah
desert, assisting in all aspects of wireless network design,
deployment, troubleshooting and maintenance. He is
currently working on a wide array of projects, from
Martian subsurface drilling simulations to Integrated
Systems Health Management for the International Space
Station. John has a dual BA degree in Anthropology and
East Asian Studies from Washington University in St.

esides in Los Gatos, CA.

Walker is a hardware and
networking specialist with the Intelligent Mobile
Technologies (IMT) team at NASA Ames Research
Center. He is a member of the team developing and
testing the capabilities of the Mobile Exploration (MEX)
testbed. The MEX System is a model for human planetary
exploration that incorporates rugged computing, long-

1- range wireless communication and mobility in support of
planetary explorers. He graduated Foothill College in Los
Altos, California with AS degrees in Data
Communication & Network Management as well as
Enterprise Networking.

Notario : Since 1994, %go A.
I have been heavely involved in software and harware
architecture.
I accomplished my bachelor degree in Industrial
Engineering with an option of electronics in 1988. Also,
in 1997 I achieved an A.A. in Computer Service
Technology.
In the past 5 years I have earned several technical degrees
in software and networking.
I am currently working on my second bachelor in
Computer Science. I joined NASNAmes
around two years ago in which I have been involved in
Sensor Data Distribution in
Planetary Exploration.

